Level	Average Gold Grade (g/t Au)	Average Silver Grade (g/t Ag)	Average Gold Equivalent Grade (g/t Au_Eq) (Ag : Au ratio 60)
2315NW Drive	8.35g/t	663.52g/t	19.41g/t
2315SE Drive	7.63g/t	719.86g/t	19.62g/t
2300NW Drive	6.85g/t	608.57g/t	16.99g/t
2300SE Drive	22.21g/t	1,592.14g/t	48.75g/t
2285NW Drive	6.60g/t	411.00g/t	13.45g/t
2285SE Drive	41.61g/t	2,430.04g/t	82.11g/t

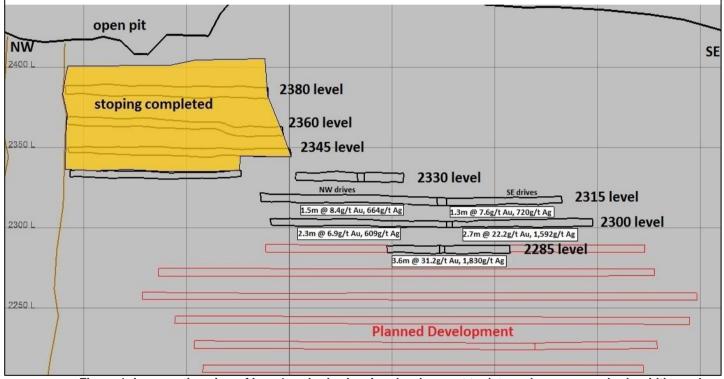


Figure 1: Longsection view of Inca 1 orebody showing development to date and average ore body widths and grades for the 2315, 2300 and 2285 levels

SD-2285SE - CHIN_006: 5.00m at 19.61g/t gold and 1,599g/t silver or 42.324/t Au_Eq

SD-2285SE – CHIN_006: Inca Vein (Detail) – Breccia-Cockade Texture - Sample UN-P044: 1.00m at 15.06g/t gold and 2,026g/t Silver

SD-2285SE - CHIN_012: 4.80m at 98.03g/t gold and 4,133g/t silver or 166.91g/t Au_Eq

SD-2285SE – CHIN_012: Inca Vein (Detail) – Breccia-Cockade-Banded Texture - Sample UN-P097: 0.80m at 78.89g/t gold and 7,695g/t Silver or 207.13 g/t Au_Eq

SD-2300NW – CHIN_013: 3.70m at 10.69g/t gold and 518g/t silver or 19.32g/t Au_Eq

SD-2300SE – CHIN_018: 3.20m at 63.48g/t gold and 2,923g/t silver or 112.19g/t Au_Eq

SD-2300SE - CHIN_025: 3.60m at 18.28g/t gold and 662g/t silver or 29.31g/t Au_Eq

2285SE Drive Channe	el Samples								
Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Au_Eq grade
2285SE-CHIN_001	2439262	6548210	2285	220	20	1.0	32.37	483.75	40.43
2285SE-CHIN_002	2439264	6548209	2286	234	34	2.9	3.58	638.27	14.22
2285SE-CHIN_003	2439265	6548205	2287	240	24	2.6	3.69	938.89	19.34
2285SE-CHIN_004	2439267	6548203	2286	235	20	2.9	15.71	227.36	19.49
2285SE-CHIN_005	2439269	6548198	2286	240	20	4.7	19.01	1,399.99	42.34
2285SE-CHIN_006	2439271	6548198	2286	250	35	5.0	19.61	1,598.66	46.25
2285SE-CHIN_007	2439273	6548195	2286	240	30	5.1	34.53	2,684.83	79.28
2285SE-CHIN_008	2439275	6548193	2286	225	20	4.3	41.26	3,213.19	94.82
2285SE-CHIN_009	2439277	6548191	2286	225	10	6.0	19.30	1,551.84	45.17
2285SE-CHIN_010	2439280	6548188	2287	245	5	6.0	54.64	2,745.96	100.40
2285SE-CHIN_011	2439281	6548187	2286	240	10	5.5	65.66	4,559.20	141.64
2285SE-CHIN_012	2439283	6548184	2286	240	15	4.8	98.03	4,132.95	166.91
2285SE-CHIN_013	2439284	6548183	2286	235	15	5.0	81.56	3,475.54	139.48
Average						4.3	41.61	2,430.04	82.11

Table 1 – Channel Sample Detail

2285NW Drive Chan	nel Sample	es							
Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Au_Eq grade
2285NW-CHIN_001	2439261	6548216	2286	230	15	4.0	4.88	379.67	11.21
2285NW-CHIN_002	2439258	6548218	2286	230	25	4.0	3.83	355.74	9.76
2285NW-CHIN_003	2439256	6548221	2286	225	30	4.1	3.00	325.85	8.43
2285NW-CHIN_004	2439255	6548223	2286	225	25	3.2	8.16	409.62	14.99
2285NW-CHIN_005	2439253	6548225	2286	225	15	4.2	12.93	457.70	20.56
2285NW-CHIN_006	2439251	6548227	2286	230	23	1.3	14.96	1,207.26	35.08
2285NW-CHIN_007	2439250	6548230	2286	239	32	1.0	2.39	163.74	5.12
2285NW-CHIN_008	2439248	6548233	2286	240	30	0.8	4.09	53.64	4.98
2285NW-CHIN_009	2439246	6548236	2286	240	30	1.0	3.10	412.73	9.98
Average						2.6	6.60	411.00	13.45

2300SE Drive Chann	el Samples								
Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Au_Eq grade
2300SE-CHIN_002	2439272	6548210	2301	235	20	1.7	5.18	348.00	10.98
2300SE-CHIN_003	2439273	6548208	2302	235	23	1.0	5.92	272.83	10.47
2300SE-CHIN_004	2439274	6548205	2302	250	30	1.4	30.08	955.90	46.01
2300SE-CHIN_005	2439276	6548204	2302	250	24	1.2	5.36	455.63	12.95
2300SE-CHIN_006	2439278	6548201	2302	230	21	1.4	15.90	1,148.09	35.03
2300SE-CHIN_007	2439279	6548199	2302	240	15	2.8	24.83	963.19	40.89
2300SE-CHIN_008	2439281	6548197	2302	230	30	2.6	23.54	2,009.44	57.03
2300SE-CHIN_009	2439283	6548195	2302	240	32	3.0	14.67	1,423.46	38.39
2300SE-CHIN_010	2439285	6548192	2302	240	22	4.1	23.47	2,153.59	59.36
2300SE-CHIN_011	2439287	6548189	2302	229	19	3.4	44.41	3,063.58	95.47
2300SE-CHIN_012	2439287	6548186	2301	235	30	3.9	34.70	2,822.85	81.75
2300SE-CHIN_013	2439288	6548184	2302	240	28	3.0	26.22	2,651.88	70.42
2300SE-CHIN_014	2439290	6548183	2302	205	20	1.9	60.99	5,191.50	147.51

2300SE Drive Channe	el Samples	(cont'd)							
2300SE-CHIN_016	2439295	6548181	2303	209	27	3.8	21.41	1,854.20	52.31
2300SE-CHIN_015	2439293	6548182	2303	211	0	3.8	27.44	1,757.72	56.74
2300SE-CHIN_017	2439297	6548180	2302	210	24	3.2	42.28	1,285.25	63.70
2300SE-CHIN_018	2439300	6548180	2302	210	30	3.2	63.48	2,922.76	112.19
2300SE-CHIN_019	2439303	6548178	2302	225	25	3.9	15.25	1,173.26	34.80
2300SE-CHIN_020	2439304	6548175	2303	220	22	1.8	72.06	2,403.37	112.12
2300SE-CHIN_021	2439306	6548174	2303	205	25	3.0	21.24	1,371.45	44.10
2300SE-CHIN_022	2439309	6548171	2302	215	20	4.2	12.40	3,105.77	64.16
2300SE-CHIN_023	2439311	6548171	2302	220	25	4.9	10.48	1,185.38	30.23
2300SE-CHIN_024	2439314	6548169	2302	210	30	3.9	11.57	934.70	27.15
2300SE-CHIN_025	2439317	6548169	2303	205	35	3.6	18.28	661.90	29.31
2300SE-CHIN_026	2439319	6548169	2303	185	20	3.5	11.20	899.16	26.18
2300SE-CHIN_027	2439323	6548169	2303	205	15	3.2	12.99	957.99	28.96
2300SE-CHIN_028	2439326	6548169	2303	213	20	1.6	2.59	335.20	8.17
2300SE-CHIN_029	2439329	6548169	2303	205	28	2.4	1.88	218.97	5.53
2300SE-CHIN_030	2439332	6548166	2303	240	24	1.3	6.56	415.67	13.49
2300SE-CHIN_031	2439333	6548166	2303	205	35	1.0	9.09	669.63	20.25
2300SE-CHIN_038	2439351	6548171	2303	210	25	1.6	2.64	169.61	5.46
2300SE-CHIN_039	2439355	6548168	2304	290	20	1.5	1.60	244.80	5.67
Average						2.7	22.21	1592.14	48.75

Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Aueq grade
2300NW-CHIN_001	2439269	6548215	2301	235	20	1.5	4.69	487.49	12.81
2300NW-CHIN_002	2439268	6548217	2301	220	25	1.2	14.63	683.18	26.01
2300NW-CHIN_003	2439265	6548221	2302	230	30	2.0	21.96	636.85	32.57
2300NW-CHIN_004	2439264	6548222	2302	220	28	2.5	23.88	699.03	35.53
2300NW-CHIN_005	2439262	6548225	2302	230	22	2.0	3.68	839.43	17.67
2300NW-CHIN_006	2439260	6548228	2302	237	22	2.6	9.72	286.46	14.49
2300NW-CHIN_007	2439258	6548230	2302	235	25	2.2	7.17	480.66	15.18
2300NW-CHIN_008	2439257	6548233	2302	225	25	3.0	4.55	429.02	11.70
2300NW-CHIN_009	2439256	6548235	2302	228	19	3.6	11.15	413.95	18.05
2300NW-CHIN_010	2439254	6548236	2302	227	24	3.0	3.82	456.14	11.42
2300NW-CHIN_011	2439251	6548239	2302	230	15	3.5	8.14	305.15	13.23
2300NW-CHIN_012	2439250	6548240	2302	225	11	1.5	18.91	581.37	28.60
2300NW-CHIN_013	2439248	6548242	2302	215	21	3.7	10.696	517.60	19.32
2300NW-CHIN_014	2439246	6548243	2303	205	20	4.1	6.65	609.16	16.80
2300NW-CHIN_015	2439245	6548244	2302	230	15	4.2	4.81	626.86	15.25
2300NW-CHIN_016	2439243	6548247	2302	240	30	4.6	5.14	618.00	15.44
2300NW-CHIN_017	2439243	6548249	2302	235	28	3.7	3.64	493.30	11.86
2300NW-CHIN_018	2439242	6548252	2302	220	17	3.8	7.92	643.02	18.64
2300NW-CHIN_019	2439241	6548254	2302	232	15	1.4	16.50	954.43	32.41
2300NW-CHIN_020	2439240	6548257	2302	235	17	3.1	3.08	476.68	11.02
2300NW-CHIN_021	2439238	6548260	2302	234	20	1.8	10.83	1,483.34	35.55
2300NW-CHIN_022	2439236	6548262	2303	227	23	2.4	4.96	736.79	17.24

2300NW Drive Chan	nel Sample	es (cont'd)							
2300NW-CHIN_024	2439233	6548267	2302	222	40	0.9	4.79	788.33	17.93
2300NW-CHIN_023	2439234	6548265	2303	225	33	2.3	5.63	784.72	18.71
2300NW-CHIN_025	2439228	6548269	2303	235	25	1.4	3.12	468.19	10.92
2300NW-CHIN_026	2439227	6548271	2302	220	25	1.0	3.23	414.26	10.13
2300NW-CHIN_027	2439226	6548273	2302	220	22	1.0	12.77	3,831.05	76.62
2300NW-CHIN_028	2439224	6548276	2303	215	20	1.5	4.36	567.38	13.82
2300NW-CHIN_029	2439222	6548278	2303	225	20	2.4	3.42	535.67	12.35
2300NW-CHIN_030	2439220	6548280	2302	230	20	2.0	2.46	417.78	9.43
2300NW-CHIN_031	2439219	6548282	2302	240	25	2.2	6.64	703.23	18.36
2300NW-CHIN_032	2439218	6548284	2302	220	30	1.6	5.35	978.36	21.66
2300NW-CHIN_033	2439215	6548286	2302	220	18	2.6	2.70	423.71	9.77
2300NW-CHIN_034	2439214	6548288	2302	220	50	2.5	2.27	286.52	7.05
2300NW-CHIN_035	2439212	6548291	2302	220	30	3.2	4.33	588.03	14.13
2300NW-CHIN_036	2439211	6548293	2302	225	25	2.6	4.95	392.30	11.49
2300NW-CHIN_037	2439209	6548296	2302	230	25	0.8	2.15	227.74	5.95
2300NW-CHIN_038	2439208	6548299	2303	230	8	2.9	3.13	417.02	10.08
2300NW-CHIN_039	2439207	6548300	2302	251	35	1.3	4.91	1,334.08	27.15
2300NW-CHIN_040	2439207	6548303	2302	260	39	1.4	3.92	998.11	20.56
2300NW-CHIN_041	2439207	6548305	2302	252	25	1.0	1.60	323.41	6.99
2300NW-CHIN_042	2439208	6548309	2303	270	18	0.9	1.17	159.71	3.83
2300NW-CHIN_043	2439202	6548301	2302	230	19	1.0	2.61	341.81	8.31
Average						2.3	6.85	608.57	16.99

Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Aueq grade
2315SE-CHIN_001	2439268	6548226	2315	242	24	2.0	6.13	227.92	9.93
2315SE-CHIN_002	2439270	6548224	2316	240	20	1.3	6.46	304.84	11.54
2315SE-CHIN_003	2439272	6548222	2316	240	20	1.6	6.81	864.63	21.22
2315SE-CHIN_004	2439275	6548218	2316	220	20	3.3	8.67	640.92	19.35
2315SE-CHIN_005	2439277	6548215	2315	213	19	2.7	2.96	417.84	9.93
2315SE-CHIN_006	2439280	6548211	2316	240	20	1.0	5.60	299.76	10.60
2315SE-CHIN_007	2439282	6548209	2315	240	30	1.2	10.52	521.10	19.20
2315SE-CHIN_008	2439284	6548207	2316	230	22	1.1	3.44	357.44	9.40
2315SE-CHIN_009	2439286	6548204	2316	225	30	1.0	5.61	548.63	14.75
2315SE-CHIN_010	2439288	6548202	2316	245	55	1.0	1.45	123.46	3.51
2315SE-CHIN_011	2439289	6548199	2316	260	30	0.9	12.36	1,027.95	29.49
2315SE-CHIN_012	2439290	6548197	2316	245	32	1.2	8.55	737.16	20.83
2315SE-CHIN_013	2439291	6548195	2316	252	30	1.8	4.81	282.27	9.51
2315SE-CHIN_014	2439292	6548192	2316	245	30	1.4	4.75	300.48	9.76
2315SE-CHIN_015	2439294	6548189	2316	220	30	1.1	23.23	884.54	37.97
2315SE-CHIN_016	2439296	6548189	2316	225	35	1.0	4.70	377.08	10.98
2315SE-CHIN_017	2439298	6548188	2316	220	30	1.1	1.67	126.55	3.78
2315SE-CHIN_018	2439300	6548186	2317	225	20	1.0	2.48	233.36	6.37
2315SE-CHIN_019	2439303	6548184	2317	210	35	2.9	11.66	1,545.90	37.43
2315SE-CHIN_020	2439304	6548182	2317	210	25	1.8	8.90	1,057.16	26.51
2315SE-CHIN_021	2439307	6548182	2316	210	22	0.6	5.39	1,130.12	24.23

2315SE Drive Channel Samples (cont'd)									
2315SE-CHIN_023	2439312	6548176	2316	200	43	1.6	6.11	964.16	22.18
2315SE-CHIN_022	2439309	6548181	2316	215	20	0.3	42.70	4,968.78	125.51
2315SE-CHIN_024	2439315	6548177	2316	210	37	0.4	30.51	4,039.35	97.83
2315SE-CHIN_025	2439315	6548172	2316	220	40	0.6	6.75	1,421.50	30.44
2315SE-CHIN_026	2439317	6548174	2316	210	30	0.5	3.99	533.67	12.88
Average						1.3	7.63	719.86	19.62

Channel	Easting	Northing	RL	Azimuth	Dip	Width	Au grade	Ag grade	Aueq grade
2315NW-CHIN_001	2439265	6548230	2315	235	21	1.4	3.27	219.59	6.93
2315NW-CHIN_002	2439264	6548233	2316	240	21	1.5	12.63	617.90	22.93
2315NW-CHIN_003	2439262	6548235	2316	230	30	2.7	13.11	612.38	23.31
2315NW-CHIN_004	2439261	6548237	2316	240	25	3.1	7.35	391.98	13.88
2315NW-CHIN_005	2439259	6548238	2316	227	10	2.9	11.40	388.03	17.86
2315NW-CHIN_006	2439258	6548241	2316	228	15	1.0	2.34	367.32	8.46
2315NW-CHIN_007	2439256	6548243	2316	230	22	1.5	3.76	537.13	12.71
2315NW-CHIN_008	2439254	6548247	2316	230	22	1.0	6.24	1,367.11	29.03
2315NW-CHIN_009	2439252	6548249	2317	230	19	1.2	3.45	336.48	9.06
2315NW-CHIN_010	2439251	6548251	2317	235	15	1.7	4.70	349.51	10.52
2315NW-CHIN_011	2439249	6548254	2317	230	22	1.8	13.17	1,217.38	33.45
2315NW-CHIN_012	2439247	6548257	2317	227	19	2.0	26.47	591.59	36.32
2315NW-CHIN_013	2439245	6548259	2317	227	24	2.9	6.91	565.62	16.34
2315NW-CHIN_014	2439244	6548262	2317	230	22	2.0	3.98	740.09	16.31
2315NW-CHIN_015	2439242	6548265	2318	225	27	1.9	4.60	493.27	12.82
2315NW-CHIN_016	2439240	6548269	2317	225	25	1.8	5.38	669.63	16.54
2315NW-CHIN_017	2439239	6548271	2317	230	22	1.0	65.14	2,942.26	114.18
2315NW-CHIN_018	2439237	6548274	2317	215	30	1.2	6.80	595.48	16.72
2315NW-CHIN_019	2439235	6548276	2317	220	22	1.4	5.49	858.64	19.80
2315NW-CHIN_020	2439233	6548279	2317	215	30	1.4	3.84	758.22	16.48
2315NW-CHIN_021	2439231	6548281	2317	235	35	0.7	2.66	342.11	8.36
2315NW-CHIN_022	2439229	6548283	2317	225	30	1.4	4.46	656.04	15.39
2315NW-CHIN_023	2439227	6548285	2318	210	30	1.4	4.16	494.63	12.40
2315NW-CHIN_024	2439225	6548287	2317	220	25	1.6	6.96	722.97	19.01
2315NW-CHIN_025	2439223	6548291	2317	220	25	1.4	8.06	1,170.27	27.57
2315NW-CHIN_026	2439222	6548293	2317	220	30	2.2	5.43	873.47	19.99
2315NW-CHIN_027	2439220	6548295	2317	227	22	2.4	5.36	462.11	13.06
2315NW-CHIN_028	2439219	6548297	2317	230	22	2.3	7.25	641.06	17.93
2315NW-CHIN_029	2439217	6548299	2318	230	40	2.0	8.89	724.15	20.96
2315NW-CHIN_030	2439215	6548301	2317	225	35	0.5	5.43	364.67	11.51
2315NW-CHIN_031	2439214	6548302	2317	213	40	1.1	5.02	954.86	20.93
2315NW-CHIN_032	2439208	6548304	2317	215	38	0.6	2.65	404.53	9.39
2315NW-CHIN_033	2439206	6548306	2317	220	25	0.5	2.98	564.77	12.39
2315NW-CHIN_034	2439214	6548305	2317	320	40	0.5	4.31	597.46	14.27
2315NW-CHIN_035	2439205	6548310	2318	220	45	1.1	3.53	678.35	14.84
2315NW-CHIN_036	2439203	6548312	2318	235	30	0.5	1.38	331.86	6.91
Average						1.5	8.35	663.52	19.41

Critoria	Section 1 Sampling Technique	
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Samples are channel samples. They are collected by samplers using hammers, chisels and calico bags.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are taken across the interval with as representative a sample taken as practically possible
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Casposo is a low sulphidation gold/silver deposit. Visible coarse gold is rare.
Drilling Techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling was undertaken, samples were all channel samples.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling was undertaken.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Sampled faces are geologically logged to distinguish mineralised zones from waste zones. Basic lithologies are also logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of	Samples are collected in calico bags and weigh about 3-4kg each. Samplers sample along a sample line marked in paint perpendicular to the ore dip. Chisels and hammers are used to collect as representative a sample as possible. Samples are then dispatched to the laboratory for preparation for assay. Samples are assayed at an external lab as well as at Troy's onsite fire assay lab. Blanks and/or standards are included in each channel sampled.
Quality of assay data and laboratory tests	the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples are assayed by an external lab, Alex Stewart of Mendoza, Argentina. Gold is assayed by standard fire assay methods and silver with aqua regia digestion followed by inductively coupled plasma with optical emission spectroscopy (ICP-OES).
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	No geophysical tools were used. Standards and blanks are inserted into selected assay batches.

<u> </u>		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are verified by more than one alternative company person.
assaying	The use of twinned holes	No drilling was conducted.
	The verification of significant intersections by either independent or alternative company personnel.	
	Discuss any adjustment to assay data	No adjustments were made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	Channel samples lines are surveyed by mine surveyors. Dip and azimuth are measured by compass and clinometer.
Data spacing	Data spacing for reporting of Exploration Results.	Where possible every development face is
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	sampled after blasting, mucking and bolting The data spacing is sufficient to establish continuity as it is taken on every development cut or about every 4m along strike. Channel samples are not used in the estimation of Mineral Resources or Reserves.
Orientation of	Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased	No compositing is applied to the channel samples The samples are taken across the dip of the ore
data in relation to geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type.	zone and thus represent true widths.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reacted if material	
Sample security	and reported if material. The measures taken to ensure sample security	Samples are crushed and ground on site with pulps sent to Mendoza for assay. Troy personnel manage the sample dispatch.
	Section 2 Reporting of Explora	tion Results
Criteria	JORC Code Explanation	Commentary
Mineral	Type, reference name/number, location and ownership	The Casposo deposit is in San Juan province,
tenement and land tenure status	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Argentina. Troy is the 100% owner of the project through local subsidiary Troy Resources Argentina Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Troy has been mining and processing at Casposo since 2009.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous to Troy surface exploration had been conducted by Intrepid and Battle Mountain. Troy has since conducted extensive drilling programs.
Geology	Deposit type, geological setting and style of mineralisation.	Casposo is a low sulphidation gold/silver deposit.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the	This information is tabulated in Table 1. All channel samples from the 2315, 2300 and 2285 levels have been included. Upper levels are not included as stoping has largely been completed
	case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually	Results reported are weighted on sample interval length. No top cuts have been applied.

Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect	The reported intervals represent true widths. The samples are taken perpendicular to the dip of the ore zone as close as practically possible.
Diagrams	(eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in Table 1.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All channel samples have been included from the 2300 and 2285 levels in the Inca 1 orebody.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other material substantive exploration data to report. The channel samples are grade control data.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Channel sampling will continue as part of the normal grade control process underground at Casposo.