| Criteria | JORC Code Explanation | Commentary | |--------------------------|--|---| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Nature and quality of sampling is carried out under QAQC procedures as per industry standards, with standards and blanks inserted every 22 samples. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | Sample representivity is ensured through carefully logging, with samples selected according to their lithological units. | | | Aspects of the determination of mineralisation that are Material to the Public Report. | The determination of mineralisation is not yet known. | | | In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | HQ core is quartered, with the same quarter consistently sampled. 1m samples are taken irrespective of lithological units. The quarter core samples weigh ~2 kg, which are dried, then crushed and a split portion of <1.5 kg is pulverised to produce a 50 gm charge for fire assay. | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | HQ core drilling with a standard tube. Triple tube in saprolite at top of the hole. Core is orientated using Reflex equipment | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | Method of recording and assessing core samples was on a hand held Motion F5te Tablet PC using a set of standard templates supplied by Maxwell Geoservices, Perth (Maxwell). | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | The measures taken to maximize sample recovery
are by measuring core length drilled against core
length recovered | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | No relationship is known to exist between sample recovery and grade, and no sample bias may have occurred due to preferential loss/gain of any fine/coarse material. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | Core samples have been geologically logged to a level of detail to support appropriate future Mineral Resource estimations. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | Logging is qualitative and quantitative. Core is photographed both in dry and wet form. | | | The total length and percentage of the relevant intersections logged. | All holes are logged in full. | | Criteria | JORC Code Explanation | Commentary | |--|--|--| | Sub-sampling
techniques and
sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | HQ core has been drilled, quartered and sampled,
with the remaining three quarters of core stored in
the original core trays and stacked on shelves
under cover in the core shed | | | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | Sample preparation is completed at SGS Laboratories, Ouagadougou, Burkina Faso. All preparation equipment is flushed with barren material prior to the commencement of sample preparation. The entire sample is dried, crushed to a nominal 2mm using a Jaw Crusher, then <1.5 kg is split using a Jones type riffle. The reject sample is retained in the original sample bag. The split is pulverised in a LM2 grinding mill to a nominal 85% passing 75 micron size fraction. An approximate 200 gram sub-sample split is taken for fire assay with the pulverized residue retained in a plastic bag. The pulverized split is fire assayed by standard procedures with an AAS finish to 10 ppb detection limit. Both the remaining reject and pulverized samples are returned and stored at Cardinal's Bolgatanga premises. | | | Quality control procedures adopted for all sub-
sampling stages to maximise representivity of
samples. | Quality control procedures adopted for all sub-
sampling stages to maximize representivilty of
samples uses commercial certified reference
material (CRM) for standards. | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | Measures taken to ensure that the core sampling is representative is to sample quarter core at 1m intervals irrespective of lithologies. | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | The sample sizes are considered appropriate to give an accurate indication of gold mineralisation. | | Quality of Assay
data and
laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | The pulverized rock sample is weighed and mixed with flux and fused using lead oxide at 1,100°C, followed by cupellation of the resulting lead button (Dore bead). The bead is digested using 1:1 HNO ₃ and HCl and the resulting solution is submitted for analysis. | | | | The digested sample solution is aspirated into the Flame Atomic Absorption Spectrometer (AAS), aerosolised, and mixed with the combustible gas, acetylene and air. The mixture is ignited in a flame whose temperature ranges from 2,100 to 2,800°C. During combustion, atoms of the gold in the sample are reduced to free, unexcited ground state atoms, which absorb light. Light of the appropriate wavelength is supplied and the amount of light absorbed can be measured against a standard curve. | | | | Results have a lower gold detection limit of 10 ppb. The AAS equipment is calibrated with each | | Criteria | JORC Code Explanation | Commentary | |---|--|---| | | | job. | | | | The analytical technique is industry standard fire assay which is considered to be a total digest of gold. | | | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | No hand held geophysical tools are used. | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Sample preparation checks for fineness are carried out by the laboratory as part of their internal procedures to ensure the grind size of 85-90% passing 75 micron is being attained. Each batch of 84 samples has 10 laboratory checks (20%), with the grind size varying between 87-99% passing 75 micron, which is acceptable. Laboratory QAQC involves the use of internal lab standards using certified reference material and blanks. | | | | Certified reference materials, having a range of values, and in-house blanks are inserted in the ratio of 1:22. No duplicate samples are taken as quarter core samples are submitted for fire assay. | | | | External laboratory checks are done on a three monthly basis through Laboratories Quality Services International (LQSI). Recent LQSI checks of Fire Assay analyses on Low Grade Oxide Material produced acceptable levels of accuracy and precision. | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. | The verification of significant intersections by either independent or alternative company personnel has not occurred. | | | The use of twinned holes. | There has been no use of twinned holes. | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Primary data was collected on a hand held Motion F5te Tablet PC using a set of standard templates supplied by Maxwell Geoservices, Perth (Maxwell). Daily data was synchronised and digitally captured by Maxwell for validation and compilation into Excel and Access spreadsheets and stored on the Cardinal servers located in Bolgatanga, Ghana, West Africa. | | | Discuss any adjustment to assay data. | No adjustments were made to assay data. | | Location of data
points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Accuracy of drill hole collar surveys is +/- 3m using a hand held Garmin GPSmap 62s GPS. | | | Specification of the grid system used. | WGS84 Sector 30N, with local grid baseline at 010° True North and lines at 50m to 100m intervals and stations at 50m along lines. | | | Quality and adequacy of topographic control. | The quality and adequacy of topographic control is | | Criteria | JORC Code Explanation | Commentary | |--|--|--| | | | +/- 3m using a hand held Garmin GPSmap 62s GPS. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. | Data spacing is 50-100m (northing) and 50-100m (easting). | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The data spacing and distribution is considered to be sufficient to establish a degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | | Orientation of data
in relation to
geological
structure | Whether sample compositing has been applied. | No sample compositing has been applied. | | | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The orientation of sampling achieves unbiased sampling of possible structures as drilling is orientated normal to the dip and foliation of the deposit. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No orientation based sampling bias has been identified in the data to date. | | Sample security | The measures taken to ensure sample security. | The measures taken to ensure sample security are through an independent Ghanaian security contractor. Samples are stored at Cardinal's base camp located at Bolgatanga, Ghana, West Africa under security until collected by SGS Laboratories and transported to their Ouagadougou laboratory in Burkina Faso. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Sampling techniques are of industry standards.
Data is audited by Maxwell Geoservices (Perth),
who have not made any other recommendations. | Section 2 – Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant) | Criteria | JORC Code Explanation | Commentary | |--------------------------------------|--|---| | Mineral Tenement
and Land Status | Type, name/reference number, location and ownership including agreements or material issues with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The Namdini Mining Licence is located in NE Ghana. Namdini Mining Limited (NML) holds the mining licence. NML signed a Heads of Agreement with Savannah Mining Ltd (Savannah) to provide "Mining Support" services to NML. Savannah has signed a Heads of Agreement with Cardinal Mining Services Ltd (CMS) to provide "Mining Support" services in relation to the Namdini Mining Licence. | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | There are no known impediments to offer "Mining Support" services to Namdini Mining Limited within the Namdini Mining licence area. | | Exploration Done
by Other Parties | Acknowledgment and appraisal of exploration by other parties. | No previous systematic exploration has been undertaken. | | Criteria | JORC Code Explanation | Commentary | |---|--|--| | Geology | Deposit type, geological setting and style of mineralisation | The deposit type comprises gold mineralisation within sheared and highly altered rocks containing sulphides (pyrite and arsenopyrite). | | | | The geological setting is a Paleo-Proterozoic Greenstone Belt comprising Birimian metavolcanics, volcaniclastics & metasediments located in close proximity to a major 30 km ~N-S regional shear zone with splays. | | | | The style of mineralisation is hydrothermal alteration containing disseminated gold-bearing sulphides | | Drill hole
information | A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth | A summary of all information is contained within this announcement. | | | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | There has been no exclusion of information. | | Data aggregation
methods | In reporting Exploration Results, weighting
averaging techniques, maximum and/or minimum
grade truncations (e.g. cutting of high grades) and
cut-off grades are usually Material and should be
stated. | No weighting averaging techniques nor cutting of high grades have yet been undertaken as assay results are awaited. | | | Where aggregated intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | Aggregated intercepts incorporating short lengths of high grade results within the lithological units are calculated to include no more than intervals of 3-5m below grades of <0.5 g/t Au when assay results are received | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values were used for this report. | | Relationship
between
mineralisation | These relationships are particularly important in the reporting of exploration results. | The relationship between mineralisation widths and intercept lengths is not yet known. | | widths and
intercept lengths | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. | The geometry of the mineralisation with respect to the drill hole angle is not yet known. | | | If it is not known and only the down hole lengths are reported, there should be a clear statement to | Only down hole lengths are reported when assay results are received and true widths of mineralisation are not yet known. | | Criteria | JORC Code Explanation | Commentary | |------------------------------------|--|---| | | this effect (e.g. 'down hole length, true width not known'). | | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views. | Appropriate locality map, plan view and sections are included in this announcement. | | Balanced Reporting | Where comprehensive reporting of all Exploration Results is not practical, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | The assay results of the drill holes NMDD472-754, NMDD470-774 and NMRC470-784 are attached. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | The interpretation of the geological observations shown in Figures 1 and 2 are subject to possible change as new information is gathered. No geochemical surveys, bulk sampling, metallurgical, mineralogical or geotechnical assessments were undertaken. | | Further Work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large – scale step – out drilling). | A combination of reverse circulation and diamond drilling is planned, followed by possible additional ground geophysical surveys depending on the results of the drilling. | | | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | The plan included shows the possible extent of mineralisation based on geological observations and previous assay results. Future drilling is planned north and west within the Namdini Project Area to obtain strike and down dip extensions to the gold mineralisation. |