APPENDIX

Figure 1: Growth in Estimated Rare Earth Oxides M&I from 2012 to 2013

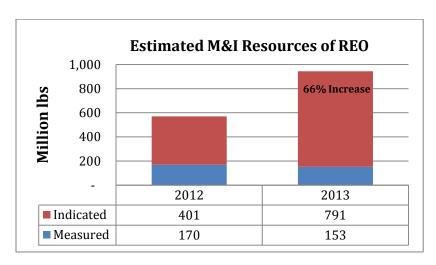


Table: 1: Summary of Estimated Measured and Indicated REE mineral resources (at 1.5% REO cutoff grade)

	Upd	ated March 201	.3	Updated May 2012 Million Tons			
	1	Million Tons					
Bull Hill and Whitetail Ridge	Oxide	OxCa	Total	Oxide	OxCa	Total	
Measured	0.87	1.07	1.94	1.10	1.00	2.10	
Indicated	6.98	5.73	12.71	3.00	2.40	5.40	
Measured and Indicated	7.85	6.80	14.65	4.10	3.40	7.50	
	TREG	O Grade Percer	nt	TREO Grade Percent			
Measured	4.31	3.63	3.93	4.08	3.81	3.95	
Indicated	3.10	3.13	3.11	3.75	3.68	3.72	
Measured and Indicated	3.24	3.21	3.22	3.84	3.72	3.79	
	TREO Conta	ined Pounds (I	Millions)	TREO Contained Pounds (Millions)			
Measured	75	78	153	92	78	170	
Indicated	433	358	791	222	179	401	
Measured and Indicated	508	436	944	314	257	571	

Table 2. Estimated Measured and Indicated REE mineral resources and detailed REO grades for deposits in the Greater Bull Hill area and Whitetail Ridge for the oxide and oxide-carbonate mineralization zones at a 1.5% REO cutoff grade.

Bear Lodge - Greater Bull Hill + Whitetail Ridge Deposits										
		Measured			Indicated			Measured+Indicated		
Parameters & %REO		Oxide	Oxide Carbonate	Total Oxide	Oxide	Oxide Carbonate	Total Oxide	Oxide	Oxide Carbonate	Total Oxide
RCLASS		1.0	1.0	1.0	2.0	2.0	2.0	1+2	1+2	1+2
Cutoff (%REO)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
		ox	OxCa	OX+OxCa	ox	OxCa	OX+OxCa	ОХ	OxCa	OX+OxCa
Tons Resource	(millions)	0.87	1.07	1.95	6.98	5.73	12.71	7.85	6.80	14.65
Volume Resource		13	15	29	106	81	187	119	96	215
Tonnage Factor	(ft3/ton)	15.3	14.1	14.7	15.2	14.1	14.7	15.2	14.1	14.7
%REO		4.31	3.63	3.93	3.10	3.13	3.11	3.24	3.20	3.22
Million lbs REO		75	78	153	433	358	791	509	436	944
%Cerium Oxide	Ce ₂ O ₃	1.83	1.60	1.70	1.34	1.37	1.35	1.40	1.41	1.40
%Lanthanum Oxide	La ₂ O ₃	1.28	0.98	1.11	0.85	0.83	0.84	0.90	0.85	0.88
%Neodymium Oxide	Nd ₂ O ₃	0.72	0.66	0.68	0.55	0.57	0.56	0.57	0.59	0.58
%Praseodymium Oxide	Pr ₂ O ₃	0.206	0.181	0.193	0.154	0.155	0.155	0.160	0.159	0.160
%Samarium Oxide	Sm ₂ O ₃	0.113	0.101	0.107	0.088	0.091	0.090	0.091	0.093	0.092
%Gadolinium Oxide	Gd ₂ O ₃	0.062	0.045	0.053	0.046	0.044	0.045	0.048	0.045	0.046
%Yttrium	Y_2O_3	0.046	0.027	0.035	0.032	0.029	0.030	0.033	0.028	0.031
%Europium Oxide	Eu ₂ O ₃	0.025	0.020	0.022	0.019	0.019	0.019	0.020	0.019	0.020
%Dysprosium Oxide	Dy ₂ O ₃	0.0156	0.0094	0.0122	0.0112	0.0100	0.0106	0.0117	0.0099	0.0108
%Terbium Oxide	Tb ₂ O ₃	0.0052	0.0033	0.0042	0.0037	0.0034	0.0036	0.0039	0.0034	0.0037
%Erbium Oxide	Er ₂ O ₃	0.0035	0.0020	0.0027	0.0021	0.0019	0.0020	0.0022	0.0019	0.0021
%Ytterbium Oxide	Yb ₂ O ₃	0.0020	0.0014	0.0016	0.0013	0.0012	0.0012	0.0013	0.0012	0.0013
%Holmium Oxide	Ho ₂ O ₃	0.00176	0.00104	0.00136	0.00118	0.00106	0.00113	0.00125	0.00106	0.00116
%Lutetium Oxide	Lu ₂ O ₃	0.00025	0.00019	0.00022	0.00017	0.00016	0.00016	0.00018	0.00017	0.00017
%Thulium Oxide	Tm₂O₃	0.00030	0.00020	0.00025	0.00020	0.00019	0.00020	0.00021	0.00019	0.00020
ppm Thorium	Th	535	333	424	369	355	363	388	352	371
ppm Uranium	U	110	118	114	97	104	100	98	107	102
CREO (Nd, Pr, Eu, Tb, Dy, Y)		1.01	0.90	0.95	0.77	0.79	0.78	0.80	0.81	0.80
Total Light		4.146	3.515	3.798	2.986	3.016	3.000	3.115	3.095	3.106
Total Heavy		0.161	0.110	0.133	0.117	0.110	0.114	0.122	0.110	0.117
Fraction Heavy		0.037	0.030	0.034	0.038	0.035	0.037	0.038	0.034	0.036

Table 3. Estimated Measured and Indicated REE mineral resources for a range of cutoff grades.

Bear Lodge Project Total/Measured + Indicated								
	Ox	ide	Oxide+	Calcite	Total Oxidized			
Cutoff	ox		OxCa		OX+OxCa			
Grade (%REO)	Tons (million)	Grade (%REO)	Tons (million)	Grade (%REO)	Tons (million)	Grade (%REO)		
0.50	25.06	1.59	15.70	1.89	40.76	1.71		
1.00	11.99	2.53	9.33	2.66	21.32	2.59		
1.50	7.85	3.24	6.80	3.20	14.65	3.22		
2.00	5.88	3.74	5.42	3.58	11.30	3.66		
2.50	4.20	4.34	4.14	3.99	8.34	4.16		
3.00	2.99	4.99	3.01	4.45	6.00	4.72		
3.50	2.19	5.63	2.04	5.02	4.23	5.33		
4.00	1.64	6.26	1.41	5.61	3.05	5.96		
4.50	1.28	6.83	1.01	6.15	2.29	6.53		
5.00	1.00	7.43	0.73	6.69	1.73	7.11		

Table 4. Estimated Indicated REE mineral resource and detailed REO grades for the Whitetail Ridge deposit only for the oxide and oxide-carbonate mineralization zones at a 1.5% REO cutoff grade.

Whitetail Ridge Only							
			Indicated				
Parameters & %RI	Oxide	Oxide Carbonate	Total Oxide				
RCLASS		2.0	2.0	2.0			
Cutoff (%REO)		1.5	1.5	1.5			
		ОХ	OxCa	OX+OxCa			
Tons Resource	(millions)	1.32	0.93	2.25			
Volume Resource		19.9	13.0	33			
Tonnage Factor	(ft3/ton)	15.1	14.0	14.6			
%REO		2.74	2.42	2.61			
Million Ibs REO		72	45	117			
%Cerium Oxide	Ce ₂ O ₃	1.07	1.00	1.04			
%Lanthanum Oxide	La ₂ O ₃	0.71	0.60	0.66			
%Neodymium Oxide	Nd_2O_3	0.52	0.44	0.49			
%Praseodymium Oxide	Pr ₂ O ₃	0.134	0.115	0.126			
%Samarium Oxide	Sm ₂ O ₃	0.104	0.084	0.096			
%Gadolinium Oxide	Gd_2O_3	0.074	0.060	0.068			
%Yttrium	Y_2O_3	0.068	0.062	0.066			
%Europium Oxide	Eu ₂ O ₃	0.028	0.022	0.026			
%Dysprosium Oxide	Dy ₂ O ₃	0.0255	0.0215	0.0238			
%Terbium Oxide	Tb ₂ O ₃	0.0077	0.0062	0.0071			
%Erbium Oxide	Er ₂ O ₃	0.0042	0.0037	0.0040			
%Ytterbium Oxide	Yb ₂ O ₃	0.0021	0.0018	0.0020			
%Holmium Oxide	Ho ₂ O ₃	0.00270	0.00234	0.00255			
%Lutetium Oxide	Lu ₂ O ₃	0.00026	0.00022	0.00025			
%Thulium Oxide	Tm ₂ O ₃	0.00039	0.00035	0.00037			
ppm Thorium	Th	816	828	821			
ppm Uranium	U	82	66	75			
CREO (Nd, Pr, Eu, Tb, Dy, Y)		0.78	0.67	0.74			
Total Light		2.530	2.244	2.412			
Total Heavy		0.213	0.180	0.199			
Fraction Heavy		0.078	0.074	0.076			

Table 5. Estimated REE mineral resources and detailed REO grades in the Inferred category for deposits in the Greater Bull Hill area plus Whitetail Ridge for the different oxidation zones of mineralization, including the oxide (OX), oxide-carbonate (OxCa), transitional (tran), and sulfide/unoxidized (sulf) zones, at a 1.5% REO cutoff grade.

Inferred Resource - Greater Bull Hill + Whitetail Ridge								
		Oxide				Total Tran +		
Parameters & %REO		Oxide	Carbonate	Total Oxide	Transition	Sulfide	Sulfide	Total
RCLASS		3.0	3.0	3.0	3.0	3.0	3.0	3.0
Cutoff (%REO)		1.5	1.5	1.5	1.5	1.5	1.5	1.5
		OX	OxCa	OX+OxCa	TRAN	SULF	TR+SIf	
Tons Resource	(millions)	20.3	11.1	31.4	1.3	9.6	10.9	42.3
Volume Resource		308	156	464	18	111	129	593
Tonnage Factor	(ft3/ton)	15.2	14.0	14.8	13.5	11.6	11.9	14.0
%REO		2.82	2.42	2.68	2.54	2.31	2.34	2.59
Million lbs REO		1,142	539	1,681	67	443	510	2,191
%Cerium Oxide	Ce ₂ O ₃	1.22	1.05	1.16	1.12	1.03	1.04	1.13
%Lanthanum Oxide	La₂O₃	0.74	0.62	0.70	0.68	0.62	0.63	0.68
%Neodymium Oxide	Nd ₂ O ₃	0.50	0.44	0.48	0.46	0.41	0.41	0.46
%Praseodymium Oxide	Pr ₂ O ₃	0.138	0.119	0.131	0.125	0.114	0.116	0.127
%Samarium Oxide	Sm ₂ O ₃	0.082	0.074	0.079	0.072	0.063	0.064	0.075
%Gadolinium Oxide	Gd ₂ O ₃	0.046	0.042	0.045	0.036	0.031	0.031	0.041
%Yttrium	Y_2O_3	0.048	0.040	0.045	0.022	0.019	0.019	0.038
%Europium Oxide	Eu ₂ O ₃	0.019	0.017	0.018	0.015	0.013	0.013	0.017
%Dysprosium Oxide	Dy ₂ O ₃	0.0141	0.0125	0.0136	0.0077	0.0066	0.0067	0.0118
%Terbium Oxide	Tb ₂ O ₃	0.0041	0.0037	0.0040	0.0027	0.0023	0.0023	0.0036
%Erbium Oxide	Er ₂ O ₃	0.0031	0.0025	0.0029	0.0015	0.0013	0.0013	0.0025
%Ytterbium Oxide	Yb ₂ O ₃	0.0018	0.0014	0.0017	0.0010	0.0008	0.0008	0.0014
%Holmium Oxide	Ho ₂ O ₃	0.00167	0.00142	0.00159	0.00081	0.00069	0.00071	0.00136
%Lutetium Oxide	Lu ₂ O ₃	0.00023	0.00019	0.00022	0.00013	0.00011	0.00011	0.00019
%Thulium Oxide	Tm_2O_3	0.00033	0.00026	0.00030	0.00015	0.00013	0.00013	0.00026
ppm Thorium	Th	488	477	484	343	370	367	454
ppm Uranium	U	86	81	84	99	103	103	89
CREO (Nd, Pr, Eu, Tb, Dy, Y)		0.72	0.63	0.69	0.63	0.56	0.57	0.66
Total Light		2.679	2.298	2.544	2.457	2.239	2.266	2.472
Total Heavy		0.138	0.120	0.132	0.087	0.074	0.076	0.117
Fraction Heavy		0.049	0.050	0.049	0.034	0.032	0.032	0.045

- 1. REO (rare-earth oxides) include Ce₂O₃, La₂O₃, Nd₂O₃, Pr₂O₃, Sm₂O₃, Gd₂O₃, Y₂O₃, Eu₂O₃, Dy₂O₃, Tb₂O₃, Er₂O₃ and other minor oxides listed in general order of decreasing abundance in the deposits (Tables 1, 2, 3, and 4).
- 2. The resources estimates are classified as Measured, Indicated, and Inferred Mineral Resources as defined by CIM and referenced in NI 43-101.
- 3. ORE considers a range of 1.0 to 2.5 per cent REO cut-off grade to be reasonable in estimation of potentially economic resources. A cutoff grade of 1.5% REO is selected as the base case. Low-grade material above 0.5% cut-off grade is undergoing metallurgical testing to determine if a simple low-cost process can result in its being upgraded.
- 4. A detailed program of core sampling and bulk density measurement was conducted successfully during the 2010-12 drilling programs, especially for oxide mineralization to ensure the most accurate data.
- 5. For purposes of this resource estimate, light rare earths (LREE) are defined as Ce₂O₃, La₂O₃, Nd₂O₃, Pr₂O₃, and Sm₂O₃, and heavy rare earths (HREE) are defined as Gd₂O₃, Y₂O₃, Eu₂O₃, Dy₂O₃, Tb₂O₃, Er₂O₃, and other minor oxides listed in general order of decreasing abundance in Tables 1, 2,3, and 4.
- 6. Resources were estimated using inverse distance weighting with grade zones to differentiate between high-grade and stockwork mineralization. High-grade mineralization was defined as a minimum 30 feet (6.1m) true width above 1.5% for the main southwest area. Slightly different cutoff grades and minimum widths were used in other areas. Drill holes were composited to nominal 10-foot (3.1m) true-width intervals for estimation. Grades were not capped, but oxide and oxide-carbonate grades were adjusted downward for estimation of the transition and sulfide zones to compensate for the significant increase in grade in the oxidized zones. Grades were estimated using trend surfaces to interpolate parallel to the carbonatite/FMR dike orientation. The resource model blocks are 10 X 10 X 10-foot cubes. Based on 4-

year average REO prices, the cutoff grade of 1.5% REO was selected near the high point of a range of likely cost scenarios. As additional data are gathered, work will continue on the resource estimates with further evaluation and refinement.